Increased Extracellular ATP: An Omen of Bacterial RTX Toxin-Induced Hemolysis?

نویسندگان

  • Yifei Wang
  • Shijun Wang
چکیده

Bacterial infection is a major threat to human health. Although pathogenic bacteria vary in their virulence, it has been recognized that many pathogenic bacteria share common mechanisms when attacking host cells and tissues. Some pathogenic bacteria synthesize and secrete polysaccharides to form an extracellular capsule. Capsules serve as virulence determinants by multiple mechanisms including facilitation of bacterial adherence, evasion of the immune response, and antibiotic resistance [1]. Moreover, to the exterior of bacterial plasma membranes are certain toxic components (e.g., lipopolysaccharide (LPS) in Gram-negative bacteria, and peptidoglycan fragments and teichoic acids in Gram-positive bacteria) that play key roles in causing bacterial septic shock or multiple organ dysfunction [2]. Significantly, bacteria may secrete proteinaceous or non-proteinaceous molecules, namely exotoxins, capable of directly destroying host cells. The Repeat-in-Toxin (RTX) family is a group of virulence-associated exotoxins that are generated by Gram-negative bacteria and are noted for their ability to form pores on the membrane of host cells including leukocytes [3]. Despite the intense effort that has been input into investigating the interaction between RTX toxins and host cells during bacterial infection, our understanding of how RTX toxins insert into host cell membranes, and in turn, how host cells respond to the challenge of these toxins remains very limited. α-Hemolysin (Hly A) and leukotoxin A (Ltx A) are two typical RTX toxins that are secreted by bacteria E. coli and Aggregatibacter actinomycetem, respectively. Exposure of blood cells such as erythrocytes to these toxins may damage the integrity of cell membranes and eventually lead to cell OPEN ACCESS

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Translocation-specific conformation of adenylate cyclase toxin from Bordetella pertussis inhibits toxin-mediated hemolysis.

Bordetella pertussis adenylate cyclase (AC) toxin belongs to the RTX family of toxins but is the only member with a known catalytic domain. The principal pathophysiologic function of AC toxin appears to be rapid production of intracellular cyclic AMP (cAMP) by insertion of its catalytic domain into target cells (referred to as intoxication). Relative to other RTX toxins, AC toxin is weakly hemo...

متن کامل

Growth phase regulation of Vibrio cholerae RTX toxin export.

Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, secretes several "accessory" toxins, including RTX toxin, which causes the cross-linking of the actin cytoskeleton. RTX toxin is exported to the extracellular milieu by an atypical type I secretion system (T1SS), and we previously noted that RTX-associated activity is detectable only in supernatant fluids from log pha...

متن کامل

Identification and characterization of hemolysin-like proteins similar to RTX toxin in Pasteurella pneumotropica.

Pasteurella pneumotropica is an opportunistic pathogen that causes lethal pneumonia in immunodeficient rodents. The virulence factors of this bacterium remain unknown. In this study, we identified the genes encoding two RTX toxins, designated as pnxI and pnxII, from the genomic DNA of P. pneumotropica ATCC 35149 and characterized with respect to hemolysis. The pnxI operon was organized accordin...

متن کامل

Functional Contributions of Positive Charges in the Pore-Lining Helix 3 of the Bordetella pertussis CyaA-Hemolysin to Hemolytic Activity and Ion-Channel Opening

The Bordetella pertussis CyaA-hemolysin (CyaA-Hly) domain was previously demonstrated to be an important determinant for hemolysis against target erythrocytes and ion-channel formation in planar lipid bilayers (PLBs). Here, net-charge variations in the pore-lining helix of thirteen related RTX cytolysins including CyaA-Hly were revealed by amino acid sequence alignments, reflecting their differ...

متن کامل

Disorder-to-Order Transition in the CyaA Toxin RTX Domain: Implications for Toxin Secretion

The past decade has seen a fundamental reappraisal of the protein structure-to-function paradigm because it became evident that a significant fraction of polypeptides are lacking ordered structures under physiological conditions. Ligand-induced disorder-to-order transition plays a key role in the biological functions of many proteins that contain intrinsically disordered regions. This trait is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014